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Dynamics of double convection
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Double-diffusive convection provides examples of the competition between
stabilizing and destabilizing mechanisms in fluid mechanics, leading to a rich variety
of complicated nonlinear behaviour. Weakly nonlinear convection can be described
analytically and fully nonlinear solutions have been obtained in a series of numerical
experiments on two-dimensional thermosolutal convection and magnetoconvection.
These provide examples of various bifurcation structures including interactions
between standing waves, travelling waves and steady solutions, transitions to
temporal chaos, loss of spatial symmetry and the development of spatiotemporal
chaos. The behaviour found in the numerical experiments can be related to low-order
systems derived as normal form equations for the appropriate degenerate
bifurcations.
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1. Introduction

The competition between stabilizing and destabilizing mechanisms in a dissipative
system can lead to a rich variety of dynamical behaviour. Consider, for example, a
fluid layer that is stabilized by a bottom-heavy solute gradient and then heated
gently from below. If a blob of fluid is displaced it will oscillate about its equilibrium
position and, since heat diffuses more rapidly than the solute, the oscillations can be
maintained against viscous dissipation. Thus instability sets in at a Hopf bifurcation
giving rise to a branch of oscillatory solutions. The oscillations may eventually
become chaotic before giving way to steady overturning motion, so providing a nice
example of temporal chaos in a continuous fluid system. Although earlier studies
were devoted to complicated time-dependent behaviour with a relatively simple
spatial structure current research is more concerned with changing spatial structures
and the development of spatiotemporal chaos.

Thermosolutal convection can be realized in the laboratory in a layer with cold
fresh water lying above hot salty water, or with a dissolved salt-sugar mixture
(Huppert & Turner 1981). Binary fluids (water—ethanol or *He—*He mixtures) are
even more convenient for experiments (Walden et al. 1985; Ahlers & Rehberg 1986).
Similar behaviour arises in a rotating system, if the viscosity is small, or in the
presence of a magnetic field, if the electrical conductivity is large; here the Coriolis
force or the Lorentz force exert stabilizing influences. Thermohaline convection
occurs naturally in the oceans, e.g. beneath the Arctic ice sheet (Padman & Dillon
1987) while magnetic fields and convection interact in cool stars like the Sun (Hughes
& Proctor 1988).
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122 D. R. Moore and N. O. Weiss

Figure 1. Steady thermosolutal convection with Ry=10% o=1, 7= 10‘%, A=15and R, =
10800. Contours of (a) ¥ (streamlines), (b) p, (¢) T (isotherms) and (d) S, after Moore et al. (1991).
Positive (negative) values are indicated by full (broken) lines and the zero contour is indicated by
a dotted line.

We shall focus our attention on an idealized model of thermosolutal convection. In
the absence of motion there is a static (trivial) solution that corresponds to a
uniformly stratified layer where the stabilizing gradient in solute concentration and
the destabilizing temperature gradient are measured by a solutal Rayleigh number
Ry and a thermal Rayleigh number R, respectively, while the density gradient is
proportional to (B, —Rg). We are interested in the régime where B > 1 and the ratio
7 of the solutal to the thermal diffusivity is small, while the Prandtl number o (the
ratio of the viscous to the thermal diffusivity) remains of order unity. Then the layer
is neutrally stratified if R, =Ry but double-diffusive effects allow oscillatory
convection to set in when Ry = [0/(0+1)]Rs < Ry (Knobloch et al. 1986b). The
dynamically interesting régime occurs when |R,—Rg| < Rg. Then the density p is
almost constant for the static solution but any motion produces different
distributions of solute concentration S and temperature 7', owing to their different
diffusivities, and therefore leads to large density gradients and interesting behaviour.
This situation is illustrated for a steady two-dimensional solution in figure 1. The
streamlines in figure 1a correspond to clockwise motion. In a steady state the
competition between advection and diffusion forces both 8 and 7 to be almost
uniform at the centre of the roll with rising and falling plumes at the sides, as shown
by the contours in figure 1¢ and d. The narrower solute plumes are embedded in the
broader thermal plumes. Hence p has the more complicated structure shown in figure
1d and vorticity with different senses is generated on either side of each plume
(Moore et al. 1990b). It is apparent that time-dependent motion can immediately
produce a complicated density pattern and so lead to exotic behaviour. The most
interesting feature of this problem is the interaction between the underlying physics,
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Dynamics of double convection 123

shown by the spatial structure of the flow, and the mathematical constraints imposed
by bifurcation theory.

We shall outline the time-dependent behaviour found in numerical investigations
of two-dimensional convection, emphasizing symmetries of the solutions and
bifurcations that lead to loss of spatial symmetry or complicated time-dependence.
The rich bifurcation structure found in these numerical experiments may be analysed
by relating it to low-order model systems which can be studied in more detail. In
particular, we rely on normal form equations that describe behaviour in the
neighbourhood of degenerate bifurcations (Guckenheimer & Holmes 1986). First of
all we discuss behaviour near the initial Hopf bifurcation, where travelling waves
compete with oscillatory (standing-wave) solutions, and then we follow these
solution branches until they meet the steady-solution branch. Next, in §3, we
illustrate the transition to temporal chaos in a confined system ; then, in §4, we look
at loss of spatial symmetry and provide an example of spatiotemporal chaos. In
conclusion, we explain how this simple model serves as a paradigm for more
complicated systems.

2. Travelling waves and standing waves
We consider a Boussinesq fluid occupying the region {0 < < A; 0 < z < 1}. with
T=1-2+4+0(x,21), S=3—2+2(z,2,1), (1)

referred to cartesian coordinates. Then 6 and 2, the fluctuations in temperature and
solute concentration, and the stream function ¥ (z, z,t) satisfy the equations

0, V2 +0(y, Vi) = o[R; 0,0 — R0, X+ V4], (2)
0,0+0(y,0) =0,y +V?20, (3)
0,2 +0(, %) =0, +7V2Z, 4)

subject to the idealized boundary conditions
Y=0%Yy=0=2=0 at z=0,1. (5)
For this section we assume periodic lateral boundary conditions so that
Y(0,2) = ¥(A,2), 6(0,2) =0(A,z), Z(0,2) =2Z(A,z). (6)

The system (2)—(6) is unaffected by translations (modulo A) in the z-direction or by
reflection in the plane & = 0; thus it has O(2) = SO(2) X Z, symmetry in x together
with the up-down symmetry

my: (x,2)—> (2, 1—2), (¥, 0,2)>(—y, —0, —2). (7)

The trivial solution has O(2) symmetry. This is broken at the Hopf bifurcation,
which gives rise to a branch of left- or right-ward travelling wave (Tw) solutions with
SO(2) symmetry, and a branch of standing wave (sw) solutions with Z, symmetry
(Ruelle 1973 ; Stewart 1988). It can be shown that sw solutions are always unstable
in the neighbourhood of the Hopf bifurcation for thermosolutal convection
(Bretherton & Spiegel 1983 ; Knobloch et al. 1986a). We shall restrict our attention
to numerical results obtained for ¢ = 1,7 = 107% and Ry = 10%; for this section we set

Phil. Trans. R. Soc. Lond. A (1990)
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124 D. R. Moore and N. O. Weiss

~a
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R 10"

Figure 2. Bifurcation structure for modal system with O(2) symmetry, showing branches of
standing wave (sw), travelling wave (Tw) and steady (ss) solutions in the (£,, N,)-plane. Full
(broken) lines indicate stable (unstable) solutions and filled (open) circles denote local (global)
bifurcations. (The ss and Tw branches were computed using eight horizontal modes but the sw
branch is a composite, based mainly on solutions of the full equations.)

A = 3. Then both branches bifurcate supercritically and Tw are stable. Figure 2
shows a bifurcation diagram for this problem mainly computed using 8 horizontal
modes (cf. Moore & Knobloch 1990). The ordinate is the thermal Nusselt number

A
Np= I—A‘lf 0,0dx, (8)
0

evaluated at z=1, and (N;—1) provides a quadratic measure of convective
efficiency. As Ry is increased there is a Hopf bifurcation at R = 7725 followed
eventually by a pitchfork bifurcation at R = 32283, giving rise to a branch of
unstable steady solutions (ss) which undergoes a saddle-node bifurcation at R{™ =
10670 (Moore et al. 1991). Figure 1 illustrates the spatial structure of a solution on
the upper part of the steady branch at R, = 10800.

The Tw and sw solutions are contrasted in figure 3 for Ry, = 10000. The travelling
wave progresses rightward without change of form and has a phase velocity
v = 18.87; there is an equivalent solution with velocity —v. From figure 3a—c it is
apparent that the Tw solution possesses the symmetry

(@,2) > (x+3A,1—2), ,0,2)>(—¢, —0,—2) 9)

in the comoving frame (Barten et al. 1989). The standing wave oscillates with a
period P = 0.288 and possesses the symmetry

t,: (x,2,8)~>(x,1—2,t+3P), (,0,X)~>(—y, —0,—2) (10)
so that advancing time by half a period is equivalent to reflection about z = 1 (Weiss

199056 ; Moore et al. 1991). At the Hopf bifurcation P = A/v and the period increases
along the sw branch, becoming infinite when the branch terminates in a heteroclinic

Phil. Trans. R. Soc. Lond. A (1990)
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z=0
x=3

S —

=
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wll

Figure 3. Standing wave and travelling wave solutions for the modal system with R, = R, = 10%.
(@), (b), (¢) Contours of ¥ and § for a leftward travelling wave at times ¢ = 0, 0.072, 0.144. (d), (e),
(f) The same but for a standing wave showing reversal of the flow.
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126 D.R. Moore and N. O. Weiss

bifurcation (see §3 below). The Tw branch terminates in a supercritical pitchfork
bifurcation from the ss branch at R{Y) = 14000, where v = 0 (Deane et al. 1987;
Knobloch & Moore 1990). Thus sw are always unstable and Tw are the only stable
solutions for R < R, < R{™) while ss are stable for Ry > R{™. In other parameter
ranges stability may be transferred from Tw to a branch of modulated waves (Mmw)
which terminates in a homoclinic bifurcation (Knobloch & Moore 1990); alter-
natively, the Mw may provide a link to a subcritical sw branch which gains
stability in a saddle-node bifurcation (Deane ef al. 1987).

3. Chaos

Instead of the periodic lateral boundary conditions (6) we now impose reflection

symmetry so that
Y=03Yy=0,0=0,2=0 at z=0,A (11)

and there is no flux of mass, heat or solute across the boundary. This restricts
behaviour so that all solutions have Z, symmetry and Tw are eliminated. For
compatibility with the previous section we have to set A = 1.5. The system now has
the symmetry of a rectangle, represented by the dihedral group D,; in particular, it
possesses the point symmetry

i (,2) > A—x, 1—2), (F,0,5)> @, —0, — %) (12)

(Weiss 1990b; Moore et al. 1991). The eigenfunctions of the linear problem,
corresponding to rolls with a horizontal wavenumber m/A, also possess this
symmetry ; hence the single-roll sw and ss solutions on branches emerging from R{
and R both possess point symmetry and the symmetry can only be broken at a
bifurcation. In this section we describe the behaviour of solutions when the
symmetry 4 is explicitly imposed, so that results from numerical experiments can be
related to behaviour in low-order model systems. Breaking of spatial symmetry will
be discussed in §4.

When Ry =0 steady convection sets in at Ry = R, =n*(14+A%)>/A* As Ry is
increased oscillatory instabilities appear for Ry > R = R 7*(1+0)/o(1—71) pro-
vided 7 < 1. Nonlinear sw solutions were first computed by Veronis (1965, 1968).
When Ry = R{” there is a degenerate (Bogdanov) bifurcation with a double-zero
eigenvalue at Ry = RY = R,+R{ /1. The relation between the oscillatory and
steady branches can be established by considering weakly nonlinear behaviour when
Ry, R, are close to R and R’ (Knobloch & Proctor 1981 ; Coullet & Spiegel 1983).
If the stream function ¥ = a(¢) sin (nx/A) sintz+ O(a?) with |a] <€ 1 then its evolution
is described by the Bogdanov-Takens normal form equation

d—(p—a®)d+(v—rka?)a =0, (13)

where u, v are parameters and k is a positive constant (Arnol’d 1983 ; Guckenheimer
& Holmes 1986). The codimension-two bifurcation occurs at the origin in the uv-
plane; at v = 0 there is a line of pitchfork bifurcations and non-stable ss exist for
v > 0. Hopf bifurcations lie on the half-line # = 0, v > 0 and the branch of oscillatory
solutions terminates in a heteroclinic bifurcation, with an orbit of infinite period
connecting a symmetric pair of saddle-points, when x =y, = (v/5k)+ O(v?). This
pattern of behaviour is structurally stable: the bifurcation structure as R, is
increased for fixed Rg, corresponding to codimension-one behaviour obtained by

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 4. (a) Sketch of a heteroclinic trajectory connecting two saddle-foci projected onto the ac-
plane. (b) Schematic bifurcation diagram showing the mean period P as a function of the
bifurcation parameter y for periodic solutions on the S1, P1, and S3 branches.

increasing x4 with v = yy—p, say, in (13), is indicated in figure 2. Numerical
experiments have confirmed the existence of a branch of sw solutions whose period
P tends to infinity as the global bifurcation is approached (Huppert & Moore 1976 ;
Knobloch et al. 1986).

Weakly nonlinear behaviour in the neighbourhood of either the Hopf bifurcation
at R or the pitchfork bifurcation at R is described by a fifth-order system of
ordinary differential equations (Veronis 1965; Da Costa ef al. 1981) which reduces to
the third-order system

i—pi+va =ac—ka®, ¢é=w(—c+ad) (14)

in the limit 70, where w = 4A%(1+A?%) and k = w/[w+2(1+ )] (Knobloch et al.
1990). The system (14) is equivalent to the well-known Lorenz equations (Sparrow
1982) in a slightly unfamiliar régime. If we again consider the double-zero bifurcation
but restrict our attention to narrow rolls (A <€ 1) and let w | 0 then behaviour near the
global bifurcation is governed by a simpler third-order system :

G—pd+va=ac, ¢=-—c+a® (15)

(Proctor & Weiss 1990). For 0.15<u <1 the heteroclinic orbit now forms
a connection between a symmetric pair of saddle-foci with eigenvalues r, —p+
ig(p,r > 0), as sketched in figure 4a. Moreover, the ratio § = p/r satisfies the
condition } <d <1 which guarantees the existence of stable chaos near the
heteroclinic bifurcation (Shil’'nikov 1965; Wiggins 1988).

As u approaches p, the period P becomes very large and a plot of P against u shows
a series of wiggles as the orbit describes more turns around the saddle-focus as shown
schematically in figure 4b. (Similar wiggles are visible in the actual bifurcation
diagram of figure 3.) Solutions on this branch (denoted by S1) are still periodic and
retain the symmetry ¢, Further bifurcations lead to chaos within bubbles on
alternate wiggles. Initially there is a sequence of bifurcations from the symmetric S1
oscillations to asymmetric P1 oscillations, in which the symmetry ¢, is broken,
followed by a cascade of period-doubling bifurcations leading to chaos interspersed
with periodic windows and then back through an inverse cascade to P1 and Sl
solutions at the end of the wiggle, as indicated in figure 4b (cf. Glendinning &
Sparrow 1984 ; Gaspard & Kapral 1984). The order in which these bifurcations occur

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 5. Attracting set for the map (16) showing iterates of « as a function of u after transients
have died away. Note the appearance of P1, P2,..., solutions at successive bifurcations and the S3

periodic window. (After Proctor & Weiss 1990.)

follows that familiar from quadratic maps and is best represented by the modified
logistic map
x> —px(l—|a)) (1= p>4) (16)

(Proctor & Weiss 1990). Figure 5 shows the attracting set for this map in the interval
2.8 > u > 4: note the transition from S1 solutions with the symmetry x— —a to
asymmetric P1 solutions at u = 3, followed by period-doubling and chaos at x = 3.57
(May 1976). There is a transition from symmetric to asymmetric chaos at 4 = 3.68
and several periodic windows can be identified. Of these the most significant
correspond to symmetric period 5 (S5) and period 3 (S3) solutions at g = 3.74 and
1 = 3.83 (Metropolis et al. 1973). The appearance of an S3 solution guarantees the
presence of chaos and of all other periodicities, both for the map and for the ordinary
differential equations. As v increases the bubble structure grows more complicated.
Figure 45 indicates how other solutions develop subsidiary homoclinicities. The P1
branches develop wiggles as the period increases. Similarly, the normalized period
P = 1P of the S3 orbits, which appear in saddle-node bifurcations, increases as they
approach heteroclinicity. Such behaviour has been investigated in several related
problems (Bernoff 1986; Weiss 1987; Swinton & Elgin 1990).

The existence of a chaotic attractor for the canonical system (15) and for the
Lorenz system (14) with @ < 1 demonstrates that chaos does indeed occur in point-
symmetric thermosolutal convection and that it is caused by the Shil'nikov
mechanism. Chaotic behaviour has also been found numerically both for (14) and for
the fifth-order model with @ of order unity but in regimes where they are no longer
valid approximations to the partial differential equations. The latter have been

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 6. Periodic windows within the chaotic regime for the partial differential equations with
R, = 10* and A = 1.4. Orbits projected onto the (V, N;)-plane for (a) an S3 solution at R, = 10640
and (b) an S5 solution at R, = 10609. (After Moore et al. 1990b.)

solved numerically and chaotic behaviour consistent with the Shil’'nikov mechanism
can be recognized, e.g. for A = 1.5 (Huppert & Moore 1976; Moore et al. 1983;
Knobloch et al. 19865 ; some phase portraits are reproduced by Weiss 1987, 1990a).
When chaos appears in numerical experiments it is not always certain whether it is
a property of the partial differential equations or a spurious consequence of
discretization. It has indeed been suggested that chaos in computational studies of
thermosolutal convection is an artefact caused by inadequate numerical resolution
(Shi & Orszag 1987 ; Goldhirsch, Pelz & Orszag 1989). Moore et al. (1990b) conducted
a carceful study of the effects of discretization on the bifurcations; they found that
while codimension-one bifurcation sets were simply displaced in parameter space,
bifurcations of codimension two were more sensitive to numerical errors. It is not
always practicable to keep refining the mesh and continuing the runs for longer times
to see whether apparently chaotic behaviour persists. A better procedure is to locate
periodic orbits and to follow them as the mesh is progressively refined. The presence
of chaos was confirmed by tracking narrow S5 and S3 windows within the chaotic
régime. Figure 6a shows an S3 orbit projected onto the (V,Ny)-plane, where the
r.m.s. velocity V is given by

= e [ v yptaces (17)

The corresponding S5 orbit is illustrated in figure 6b. The symmetry ¢, = if, implies
that each orbit in this plane is described twice in one period of the oscillation ; within
each window there is a sequence of bifurcations corresponding to behaviour in the
map (16). The windows occur over a very narrow range in Ry: for instance, the
position of the 85 window is determined to an accuracy of 1 in 10* and converges at
a rate consistent with the accuracy of the difference scheme as the number of mesh
intervals is increased from 40 to 160. Since the values of R, for the S5 and S3 windows
converge to different values the existence of all the associated bifurcation structure,
including chaos, can be demonstrated conclusively.

Phil. Trans. R. Soc. Lond. A (1990)
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()

(¢)

Figure 7. Loss of point symmetry. Contours of the normalized density p for a spatially asymmetric
S1 oscillation with period P = 0.4 at times (a) ¢ = 0, (b) t = 0.04, (c) ¢ = 0.08, (d) ¢ = 0.12, (¢) ¢ = 0.186,
(f) t = 0.20. (After Moore et al. 1991.)

4. Loss of spatial symmetry

So far we have only considered bifurcations involving loss of temporal symmetries.
Now we relax the imposed point symmetry (12), thereby allowing the symmetry ¢ of
the ss and sw solutions to be broken at secondary bifurcations. For A = 1.5 solutions
with point symmetry on the upper portion of the steady branch, like that exhibited
in figure 1, are always stable with respect to asymmetric perturbations. We find,
however, that oscillatory solutions lose point symmetry around R, = 10800 and
stable periodic solutions that are spatially symmetric can be found for 10690 <
Ry < 11795 (Moore et al. 1991). Figure 7 shows the normalized density

plx,2,t) = RgS—R,T (18)

for an S1 solution at Ry, = 10800 at equally spaced intervals in time spanning
approximately half a period. It is apparent that the point symmetry of figure 1 has
been broken: action is concentrated on the left-hand side while the right-hand side
is relatively static. (There is an equivalent solution, related by the broken symmetry
to that in figure 7, with the action on the right.) Although both S and 7 vary
smoothly the density shows much more structure, with isolated plumes and islands.
Comparison of figure 7a with figure 7f shows that the symmetry ¢, is still preserved.
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Dynamics of double convection 131

The eigenfunctions of the linear problem have the form
Y = Y, (8) sin (mma/A) sin (n1z), ete. (19)

For A = 1.5 the first Hopf bifurcation occurs at R = 7725 for (m,n) = (1, 1), closely
followed by a second Hopf bifurcation at B = 8616 for (m,n) = (2,1). The branch
emerging from this second bifurcation corresponds to two-roll solutions which
possess the symmetry

my: (x,2)>(A—2x,2), ,0,2)>(—¢,0,2) (20)

but lack the symmetry 7. Spatially asymmetric oscillations like that in figure 7
correspond to mixed-mode solutions on branches linking the branches of pure single-
roll and two-roll solutions. It can readily be seen that a simple combination yields a
horizontal structure of the form

sin (mx/A) + ¢ sin (2nx/A) = sin (mx/A)[1 + 2¢ cos (nz/A)], (21)

which reduces the amplitude of motion on the right or left of the region depending
on the sign of ¢, as found in figure 7. The full bifurcation structure, involving many
branches, has been investigated for the analogous problem in magnetoconvection
(Nagata et al. 1990).

If the aspect ratio is doubled so that A = 3 trajectories are no longer attracted to
solutions like that in figure 7. The first mode to become unstable has m = 2: this
corresponds to the single-roll sw solution with A = 1.5 but now it is followed
successively by modes with m = 3,4 and 1. Secondary, tertiary and subsequent
bifurcations can rapidly lead to an intricate pattern of mixed modes. Figure 8 shows
apparently persistent chaotic behaviour found for B, = 11100 after the system has
evolved from an initially perturbed state up to ¢ = 64 (Moore et al. 1990a). The
density contours plotted at six equally spaced points in time show strong rising and
sinking plumes, with a tendency for disturbances to travel to the left. This example
of spatiotemporal chaos shows that irregular behaviour is likely to develop unless the
system is severely constrained by imposed symmetries or boundary conditions.
Although motion is still dominated by coherent structures there is no obvious
periodicity in space or time. In boxes with much larger aspect ratios aperiodic
travelling waves progress from side to side and are reflected at the lateral boundaries
(Deane et al. 1988).

5. Conclusion

Two-dimensional thermosolutal convection provides an idealized but instructive
model that illustrates the range of behaviour possible in a nonlinear fluid system. In
the configuration that we have studied here complicated behaviour occurs in the
parameter range 0.91 < R./Rq < 1.19 where double-diffusive effects lead to vari-
ations of density that produce dynamically interesting oscillations. With different
boundary conditions or in three dimensions further instabilities would lead
eventually to turbulent motion as in ordinary Bénard convection (Libchaber 1987 ;
Castaing et al. 1989).

From a more mathematical point of view, we have shown how multiple bifurcations
can lead to complicated spatiotemporal behaviour. This can be investigated in the
laboratory or in numerical experiments where successive transitions can be isolated.
Analysis of the bifurcation structure relies, however, on constructing low-order
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()

Figure 8. Spatiotemporal chaos in a domain with A = 3. Contours of p at times (a) ¢t = 0.0,
(b)t=10.1,(c) t =02, (d) t = 0.3, (¢) t = 0.4 and (f) t = 0.5, referred to an arbitrary origin.

evolution equations to describe the pattern that has been observed. This can be
achieved by unfolding degenerate bifurcations to produce canonical normal form
equations. The second-order Bogdanov-Takens equation (13) is an obvious example
of this approach: the interaction between standing wave and steady solutions with
Z, symmetry can be understood by reference to equation (13) and the normal form
equations have been extended to cover travelling waves with O(2) symmetry as well
(Dangelmayr & Knobloch 1987). Temporal chaos requires a third-order system: the
Lorenz equations (14) can be regarded as a simplified normal form for the degenerate
bifurcation of codimension three that occurs when u = v = @ = 0 (Spiegel 1987). Loss
of spatial symmetry with the formation of mixed-mode solutions can be treated
similarly. The normal form equations for a double pitchfork or Hopf bifurcation are
just a Lotka—Volterra system (Stuart 1962; Guckenheimer & Holmes 1986) and the
interaction between sw and ss branches could be brought in by constructing a
fourth-order coupled Bogdanov—Takens system (Weiss 19905).

The same sort of approach can of course be applied to other problems.
Magnetoconvection displays similar behaviour (Proctor & Weiss 1982) though the
nonlinear Lorentz force allows a wider range of possibilities, especially if the fluid is
compressible (Hughes & Proctor 1988; Hurlburt et al. 1989). Rotation also leads to
an analogous bifurcation structure (Guckenheimer & Knobloch 1983; Silber &
Knobloch 1989). The existence of chaos arbitrarily close to the onset of instability
was first demonstrated for thermosolutal convection in a rotating system where the
normal form equation is obtained by unfolding a degenerate bifurcation of
codimension three with a triple-zero eigenvalue (Arnéodo et al. 1985; Arnéodo &
Thual 1985). The resulting system is fundamentally different from (14) and (15) but
closely related to the equation put forward long ago by Moore & Spiegel (1966;
Spiegel 1985) to describe double convection, which yielded aperiodic oscillations.
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What is remarkable is that the appearance of chaos in all these problems is associated
with homoclinic or heteroclinic bifurcations involving a saddle-focus. The Shil’'nikov
mechanism crops up everywhere.

We have benefited from lively discussions with Edgar Knobloch and Michael Proctor and we are
grateful to Janet Wilkins for assisting with the computation.
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